The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.
نویسندگان
چکیده
By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology.
منابع مشابه
The extraordinary joint material of an articulated coralline alga. I. Mechanical characterization of a key adaptation.
Flexibility is key to survival for seaweeds exposed to the extreme hydrodynamic environment of wave-washed rocky shores. This poses a problem for coralline algae, whose calcified cell walls make them rigid. Through the course of evolution, erect coralline algae have solved this problem by incorporating joints (genicula) into their morphology, allowing their fronds to be as flexible as those of ...
متن کاملIndefatigable: an erect coralline alga is highly resistant to fatigue.
Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather th...
متن کاملKelp versus Coralline: Cellular Basis for Mechanical Strength in the Wave-swept Seaweed Calliarthron (corallinaceae, Rhodophyta)
Previous biomechanical studies of wave-swept macroalgae have revealed a trade-off in growth strategies to resist breakage in the intertidal zone: growing in girth versus growing strong tissues. Brown macroalgae, such as kelps, grow thick stipes but have weak tissues, while red macroalgae grow slender thalli but have much stronger tissues. For example, genicular tissue in the articulated coralli...
متن کاملDesign and Evaluation of an Articulated Ankle Foot Orthosis with Plantarflexion Resistance on the Gait: a Case Series of 2 Patients with Hemiplegia
Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in str...
متن کاملPredicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer
Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 12 شماره
صفحات -
تاریخ انتشار 2016